8 research outputs found

    Take the Hint: Improving Arabic Diacritization with Partially-Diacritized Text

    Full text link
    Automatic Arabic diacritization is useful in many applications, ranging from reading support for language learners to accurate pronunciation predictor for downstream tasks like speech synthesis. While most of the previous works focused on models that operate on raw non-diacritized text, production systems can gain accuracy by first letting humans partly annotate ambiguous words. In this paper, we propose 2SDiac, a multi-source model that can effectively support optional diacritics in input to inform all predictions. We also introduce Guided Learning, a training scheme to leverage given diacritics in input with different levels of random masking. We show that the provided hints during test affect more output positions than those annotated. Moreover, experiments on two common benchmarks show that our approach i) greatly outperforms the baseline also when evaluated on non-diacritized text; and ii) achieves state-of-the-art results while reducing the parameter count by over 60%.Comment: Arabic text diacritization, partially-diacritized text, Arabic natural language processin

    Improving Language Model Integration for Neural Machine Translation

    Full text link
    The integration of language models for neural machine translation has been extensively studied in the past. It has been shown that an external language model, trained on additional target-side monolingual data, can help improve translation quality. However, there has always been the assumption that the translation model also learns an implicit target-side language model during training, which interferes with the external language model at decoding time. Recently, some works on automatic speech recognition have demonstrated that, if the implicit language model is neutralized in decoding, further improvements can be gained when integrating an external language model. In this work, we transfer this concept to the task of machine translation and compare with the most prominent way of including additional monolingual data - namely back-translation. We find that accounting for the implicit language model significantly boosts the performance of language model fusion, although this approach is still outperformed by back-translation.Comment: accepted at ACL2023 (Findings

    Analyzing And Improving Neural Speaker Embeddings for ASR

    Full text link
    Neural speaker embeddings encode the speaker's speech characteristics through a DNN model and are prevalent for speaker verification tasks. However, few studies have investigated the usage of neural speaker embeddings for an ASR system. In this work, we present our efforts w.r.t integrating neural speaker embeddings into a conformer based hybrid HMM ASR system. For ASR, our improved embedding extraction pipeline in combination with the Weighted-Simple-Add integration method results in x-vector and c-vector reaching on par performance with i-vectors. We further compare and analyze different speaker embeddings. We present our acoustic model improvements obtained by switching from newbob learning rate schedule to one cycle learning schedule resulting in a ~3% relative WER reduction on Switchboard, additionally reducing the overall training time by 17%. By further adding neural speaker embeddings, we gain additional ~3% relative WER improvement on Hub5'00. Our best Conformer-based hybrid ASR system with speaker embeddings achieves 9.0% WER on Hub5'00 and Hub5'01 with training on SWB 300h.Comment: Accepted at ITG Speech Communications 202

    Acoustic Data-Driven Subword Modeling for End-to-End Speech Recognition

    Full text link
    Subword units are commonly used for end-to-end automatic speech recognition (ASR), while a fully acoustic-oriented subword modeling approach is somewhat missing. We propose an acoustic data-driven subword modeling (ADSM) approach that adapts the advantages of several text-based and acoustic-based subword methods into one pipeline. With a fully acoustic-oriented label design and learning process, ADSM produces acoustic-structured subword units and acoustic-matched target sequence for further ASR training. The obtained ADSM labels are evaluated with different end-to-end ASR approaches including CTC, RNN-Transducer and attention models. Experiments on the LibriSpeech corpus show that ADSM clearly outperforms both byte pair encoding (BPE) and pronunciation-assisted subword modeling (PASM) in all cases. Detailed analysis shows that ADSM achieves acoustically more logical word segmentation and more balanced sequence length, and thus, is suitable for both time-synchronous and label-synchronous models. We also briefly describe how to apply acoustic-based subword regularization and unseen text segmentation using ADSM.Comment: accepted at Interspeech202

    Enhancing and Adversarial: Improve ASR with Speaker Labels

    Full text link
    ASR can be improved by multi-task learning (MTL) with domain enhancing or domain adversarial training, which are two opposite objectives with the aim to increase/decrease domain variance towards domain-aware/agnostic ASR, respectively. In this work, we study how to best apply these two opposite objectives with speaker labels to improve conformer-based ASR. We also propose a novel adaptive gradient reversal layer for stable and effective adversarial training without tuning effort. Detailed analysis and experimental verification are conducted to show the optimal positions in the ASR neural network (NN) to apply speaker enhancing and adversarial training. We also explore their combination for further improvement, achieving the same performance as i-vectors plus adversarial training. Our best speaker-based MTL achieves 7\% relative improvement on the Switchboard Hub5'00 set. We also investigate the effect of such speaker-based MTL w.r.t. cleaner dataset and weaker ASR NN.Comment: accepted at ICASSP 202

    Development of Hybrid ASR Systems for Low Resource Medical Domain Conversational Telephone Speech

    Full text link
    Language barriers present a great challenge in our increasingly connected and global world. Especially within the medical domain, e.g. hospital or emergency room, communication difficulties and delays may lead to malpractice and non-optimal patient care. In the HYKIST project, we consider patient-physician communication, more specifically between a German-speaking physician and an Arabic- or Vietnamese-speaking patient. Currently, a doctor can call the Triaphon service to get assistance from an interpreter in order to help facilitate communication. The HYKIST goal is to support the usually non-professional bilingual interpreter with an automatic speech translation system to improve patient care and help overcome language barriers. In this work, we present our ASR system development efforts for this conversational telephone speech translation task in the medical domain for two languages pairs, data collection, various acoustic model architectures and dialect-induced difficulties.Comment: ASR System Paper for HYKIST projec
    corecore